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Marine  ecosystem  management  has  traditionally  been  divided  between  
fisheries  management  and  biodiversity  conservation  approaches,  and  the  
merging  of  these  disparate  agendas  has  proven  difficult.  Here  we  offer  a  
pathway  that  can  unite  fishers,  scientists,  resource  managers,  and  
conservationists  towards  a  single  vision  for  some  areas  of  the  ocean  where  
small  investments  in  management  can  offer  disproportionately  large  
benefits  to  fisheries  and  biodiversity  conservation.  Specifically,  this  
provides  a  series  of  evidenced-based  arguments  that  support  an  urgent  
need  to  recognize  fish  spawning  aggregations  (FSAs)  as  a  focal  point  for  

Abstract:  fisheries  management  and  conservation  on  a  global  scale,  with  a  particular  
emphasis  placed  on  the  protection  of  multi-species  FSA  sites.  We  illustrate  
that  these  sites  serve  as  productivity  hotspots  –  small  areas  of  the  ocean  
that  are  dictated  by  the  interactions  between  physical  forces  and  
geomorphology,  attract  multiple  species  to  reproduce  in  large  numbers,  
and  support  food  web  dynamics,  ecosystem  health,  and  robust  fisheries.  
FSAs  are  comparable  in  vulnerability,  importance,  and  magnificence  to  
breeding  aggregations  of  seabirds,  sea  turtles,  and  whales  yet  they  receive  
insufficient  attention  and  are  declining  worldwide.  Numerous  case  studies  
confirm  that  protected  aggregations  do  recover  to  benefit  fisheries  through  
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increases  in  fish  biomass,  catch  rates,  and  larval  recruitment  at  fished  
sites.  The  small  size  and  spatio-temporal  predictability  of  FSAs  allow  
monitoring,  assessment,  and  enforcement  to  be  scaled  down  while  benefits  
of  protection  scale  up  to  entire  populations.  Fishers  intuitively  understand  
the  linkages  between  protecting  FSAs  and  healthy  fisheries  and  thus  tend  
to  support  their  protection.  
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24 Abstract 

25 Marine ecosystem management has traditionally been divided between fisheries management 

26 and biodiversity conservation approaches, and the merging of these disparate agendas has proven 

27 difficult. Here we offer a pathway that can unite fishers, scientists, resource managers, and 

28 conservationists towards a single vision for some areas of the ocean where small investments in 

29 management can offer disproportionately large benefits to fisheries and biodiversity 

30 conservation. Specifically, this provides a series of evidenced-based arguments that support an 

31 urgent need to recognize fish spawning aggregations (FSAs) as a focal point for fisheries 

32 management and conservation on a global scale, with a particular emphasis placed on the 

33 protection of multi-species FSA sites. We illustrate that these sites serve as productivity hotspots 

34 – small areas of the ocean that are dictated by the interactions between physical forces and 

35 geomorphology, attract multiple species to reproduce in large numbers, and support food web 

36 dynamics, ecosystem health, and robust fisheries. FSAs are comparable in vulnerability, 

37 importance, and magnificence to breeding aggregations of seabirds, sea turtles, and whales yet 

38 they receive insufficient attention and are declining worldwide. Numerous case studies confirm 

39 that protected aggregations do recover to benefit fisheries through increases in fish biomass, 

40 catch rates, and larval recruitment at fished sites. The small size and spatio-temporal 

41 predictability of FSAs allow monitoring, assessment, and enforcement to be scaled down while 

42 benefits of protection scale up to entire populations. Fishers intuitively understand the linkages 

43 between protecting FSAs and healthy fisheries and thus tend to support their protection. 

44 

45 Key words: fish spawning aggregations, fisheries management, marine conservation, marine 

46 productivity hotspots, physical-biological coupling, fisheries co-management 
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47 Introduction: Mammals, birds and reptiles; why not fishes? 

48 Many animals in both the terrestrial and marine environment undergo large migrations to 

49 aggregate en mass at specific locations and during discrete, predictable times (Bauer and Hoye 

50 2014). Breeding migrations of wildebeests and other land megafauna in Africa, the gray whales 

51 in the Eastern Pacific, the penguins of Antarctica, and all species of sea turtles are globally 

52 iconic, such that protection of these critical life history processes are widely acknowledged as a 

53 high priority in species conservation and as focal points for coordinated multi-agency 

54 management actions (Martin et al. 2007; Wilcove and Wikelski 2008). In some cases, these are 

55 areas where multiple species gather to breed either simultaneously or at different times of the 

56 year. Such locations are often labeled as temporary “hotspots” or places of periodic high 

57 biodiversity, productivity, and vulnerability whose protection can yield disproportionately high 

58 benefits for conservation (Myers et al. 2000; Roberts et al. 2002). 

59 This reproductive phenomenon is also critical to the resilience of many populations of 

60 marine fishes and the sustainability of many fisheries. Fish spawning aggregation (FSAs; Figure 

61 1) are temporary gatherings of large numbers of conspecific fish that form for the sole purpose of 

62 reproduction (Domeier 2012). FSAs are critical life-cycle events to those species that engage in 

63 such behavior, often representing the only opportunities when fish within the population 

64 reproduce, and thus comprising the major source of reproductive output (Sadovy de Mitcheson 

65 and Colin 2012). FSAs are predictable in time and space with locations and cycles dictated by 

66 the adaptation of various species to interactions between geomorphology, habitat features, and 

67 ocean dynamics that generate complex, localized, and ephemeral linkages through ocean food 

68 webs and attract top predators and mega-planktivores (Heyman et al. 2001; Ezer et al. 2011; 

69 Pittman and McAlpine 2003; Petitgas et al. 2010). Large, predictable concentrations of fish are 
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70 also attractive sites for fishing, which explains why FSAs support highly productive commercial 

71 (both industrial and small-scale), recreational, and subsistence fisheries all over the world, but 

72 overexploitation has contributed to rapid stock depletions and localized extirpations (Sadovy and 

73 Domeier 2005; Sadovy et al. 2008). 

74 Fishes rank only below birds in terms of the amount of published scientific information 

75 available on breeding migrations and aggregations (Bauer et al. 2009), and many fish 

76 aggregations are equivalent in scale, spectacle, vulnerability and importance to the most well 

77 known wildlife aggregations. For these reasons, FSAs have been recognized in principle as focal 

78 points for fisheries and marine management in some regions (Green et al. 2014). With the 

79 exception of salmonids (Elison et al. 2014; ADF&G 2015), however, there has been little 

80 directed management of spawning aggregations (Sadovy de Mitcheson et al. 2008). Many sites 

81 have not been documented and of those that have, few are managed or protected (Russell et al. 

82 2014). Management focus on FSAs has been hindered in part by the belief that conventional 

83 management (e.g. size or catch limits) obviates the need for specific attention to aggregation sites 

84 (Tobin et al. 2013). 

85 In a crowded world with declining financial and natural resources, investments in marine 

86 conservation and fisheries management must be efficient and enforceable and provide large 

87 measurable benefits to both resources and stakeholders. Here we argue that focusing protection 

88 on these predictable, productive and critical life-cycle events can provide large, rapid, and 

89 measurable benefits for both biodiversity conservation and sustainable fisheries management in a 

90 manner that is logistically feasible, economically practical, and garners broad consensus support. 

91 The high reproductive potential of FSA sites, particularly those where multiple species 

92 aggregate, means that effective protection from exploitation can help rebuild depleted local 
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93 populations and the fisheries they support (Nemeth 2005; Pondella and Allen 2008; Luckhurst 

94 and Trott 2009; Aburto-Oropeza et al. 2011). Numerous case studies exist that demonstrate the 

95 effectiveness and enormous value to local communities of small investments in FSA protection 

96 (Hamilton et al. 2011; Aburto-Oropeza et al. 2011; Heyman and Granados-Dieseldorff 2012). 

97 While FSA protection is not a panacea for all the challenges facing the worlds’ oceans or the 

98 shortcomings of traditional fisheries management, nor does it promise to solve all the challenges 

99 facing marine protected areas and marine conservation, it provides a clear pathway to integrate 

100 biodiversity conservation and fisheries management with the potential for strong support by 

101 fishers and other stakeholders. 

102 

103 Hotspots of marine productivity that support ecosystem health 

104 FSAs are most studied on coral reefs, but they have been identified within nearly every 

105 marine eco-region and habitat type, ranging from shallow tropical coral reefs, subtropical 

106 estuaries, and temperate offshore banks to seamounts in the deep ocean. In the most 

107 comprehensive compilation of spawning aggregation records to date, 906 reports of FSAs have 

108 been documented across all 5 oceans, 53 countries, 44 families, and more than 300 species of 

109 fishes (Russell et al. 2014; SCRFA 2014) (Figure 2). Since the database is largely focused on 

110 tropical reef fishes, it likely omits the majority of known aggregations throughout the globe, 

111 particularly those in non-reef and non-tropical habitats. For example, a number of triggerfish 

112 species (Balistidae) form nesting aggregations over sandy bottoms adjacent to reefs (Erisman et 

113 al. 2010), and pelagic billfishes (e.g. Black Marlin: Istiompax indica, Istiophoridae) and 

114 mackerels (e.g. Monterey Spanish Mackerel: Scomberomorus concolor, Scombridae) also 

115 aggregate to spawn in a highly predictable manner (Domeier and Speare 2012; Erisman et al. 
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116 2015). Therefore, FSAs are broadly meaningful across taxa and global geography despite being 

117 under-documented. 

118 Many FSA sites harbor aggregations of several or even tens of species (Sedberry et al. 

119 2006; Heyman and Kjerfve 2008; Sadovy de Mitcheson et al. 2008; Kobara et al. 2013; Claydon 

120 et al. 2014) that gather in the same location at different times of the year according to specific 

121 seasonal, lunar, tidal, and diel cycles. As one notable example, Kobara and Heyman (2010) 

122 showed that all fourteen known Nassau Grouper (Epinephelus striatus, Epinephelidae) spawning 

123 sites in Belize harbor multi-species FSAs. A recent review of 108 transient FSA sites (Kobara et 

124 al. 2013) in the wider Caribbean illustrated that most sites in that region harbor aggregations of 

125 multiple species. Individual sites harbor as many as 24 species from 9 different families of 

126 fishes during different specific lunar phases within certain months. The majority of Caribbean 

127 multispecies FSA sites listed above occur at seaward projections of undersea shelf edges or reef 

128 promontories, while in other tropical regions such as the Indo-Pacific they are often associated 

129 with promontories and reef channels (Nemeth 2009, 2012; Colin 2012; Kobara et al., 2013). 

130 Synchronization of spawning with environmental cues has been documented elsewhere for 

131 aggregations that occur in lagoons and estuaries, temperate and coral reefs, and offshore habitats, 

132 although the temporal and spatial scales vary by location and species (Pankhurst 1988; Domeier 

133 and Speare 2012; Erisman et al. 2012; Russell et al. 2014; Zemeckis et al. 2014). 

134 The spatio-temporal predictability and persistence of FSAs is a product of the life history 

135 strategies of fishes evolving in response to the geomorphological characteristics and the physical 

136 processes that occur at these locations only during certain periods (Choat 2012; Colin 2012) in 

137 order to maximize reproductive fitness (Molloy et al. 2012). Ocean currents interact with distinct 

138 habitat features (e.g., promontories, seamounts, channels) to generate intermittent upwellings and 
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139 localized gyres, which retain massive volumes of nutrients and spawned eggs (Shcherbina et al. 

140 2008; Karnauskas et al. 2011; Ezer et al. 2011). This scenario creates concentrated hotspots of 

141 primary and secondary productivity that cascade into diverse coastal and pelagic food webs 

142 (Morato et al. 2010; Wingfield et al. 2010). FSAs create “egg boons”, immense but temporary 

143 concentrations of highly nutritious fatty acids, molecules that are especially important for the 

144 health of nearly all marine animals and the health of whole marine ecosystems. Egg boons 

145 represent a major trophic pathway that creates linkages and feedbacks between organisms and 

146 environments across all trophic levels and among the few pathways that recycle essential 

147 nutrients from apex predators to the lower trophic levels (Fuiman et al. 2014) (Figure 3). These 

148 events are comparable to the synchronized mass spawning of corals shown to create pulses of 

149 nutrients that are rapidly assimilated into local food webs (Guest 2008). The fatty acids and other 

150 nutrients produced en masse by spawning aggregations represent a cross-ecosystem spatial 

151 subsidy that can be advected to various microhabitats (e.g. intertidal and subtidal) and utilized by 

152 a variety of organisms (Hamner et al. 2007; Fox et al. 2014). Similarly, aggregations of 

153 spawning fish create biogeochemical “hot moments” that supply up to an order of magnitude 

154 more nitrogen and phosphorus than baseline levels on coral reefs, and overfishing of 

155 aggregations may reduce nutrient supplies by aggregating fish by up to 87% (Archer et al. 2014). 

156 Fish also forage and are preyed upon throughout their migrations to, from, and at aggregation 

157 sites thereby establishing transport and trophic interactions with resident communities, mediating 

158 the diversity and stability of ecological communities, and fostering ecosystem connectivity 

159 (Nemeth 2009; McCauley et al. 2012; Bauer and Hoye 2014). 

160 The ephemeral concentration of food resources at FSA sites are also associated with 

161 timed migrations by a wide diversity of large, migratory predators (e.g. sharks, billfishes, 
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162 dolphins, and tunas) that feed on aggregating fishes (Nemeth et al. 2010; Graham and 

163 Castellanos 2012) and mega-planktivores (e.g. Whale Sharks: Rhincodon typus, Rhincodontidae; 

164 and Manta Rays: Manta birostris, Myliobatidae) that aggregate to feed on the spawned eggs 

165 (Heyman et al. 2001; Hoffmayer et al. 2007; Nemeth 2009; Hartup et al. 2013; Kobara et al. 

166 2013). Ecological benefits result from enhanced retention and survivorship of larvae (Ezer et al. 

167 2011; Karnauskas et al. 2011), the dispersal of nutritious eggs, and the potential spillover of 

168 these rich sources of productivity into adjacent areas (Morato et al. 2010; Cherubin et al. 2011; 

169 Harrison et al. 2012; Almany et al. 2013; Kobara et al. 2013). 

170 Protecting multi-species FSAs can have umbrella effects that support complex food webs 

171 and populations of apex predators necessary for maintaining healthy ecosystem function and 

172 structure (Pauly et al. 1998; Heithaus et al. 2008). The loss of aggregations, which in many 

173 tropical and temperate reefs is equated with the loss of apex predators such as groupers 

174 (Epinephelidae), snappers (Lutjanidae), and other piscivores (Pondella and Allen 2008; Choat 

175 2012), has contributed to global declines in ecosystem health (Jackson et al. 2001; Burke and 

176 Maidens 2004; Estes et al. 2011). Similarly, the loss of forage fishes (e.g. herrings and 

177 menhaden) that migrate and aggregate to spawn in temperate regions may impact many kinds of 

178 predators, including fishes, seabirds, marine mammals, and squid (Pikitch et al. 2014). Protected 

179 FSA sites, particularly those involving apex predators or forage fishes, can therefore be used as 

180 indicators of healthy marine ecosystems that serve as baselines to assess the status of other areas 

181 (Sadovy and Domeier 2005). Likewise, these sites create lucrative opportunities for eco-tourism 

182 in the tropics and subtropics, in which aggregations of reef fishes, sharks, dolphins, and manta 

183 rays help generate hundreds of millions of dollars annually for the recreational diving industry 

184 from divers who prefer large animals and healthy reefs (Williams and Polunin 2000; Rudd and 
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185 Tupper 2002; Heyman et al. 2010; Vianna et al. 2012). 

186 

187 Globally important and threatened 

188 FSAs currently support or once supported some of the most important and productive 

189 commercial, recreational, and subsistence fisheries across the globe, and multi-species FSAs 

190 sites often represent the most important regional fishing grounds (Sadovy de Mitcheson and 

191 Erisman 2012). Notable examples from commercial fisheries include Atlantic Cod (Gadus 

192 morhua, Gadidae), groupers and snappers from the Live Reef Fish Food Trade in Southeast Asia, 

193 Orange Roughy (Hoplostethus atlanticus, Trachichthyidae) fisheries at seamounts off New 

194 Zealand and Namibia, and salmon fisheries in the U.S. Pacific Northwest. Other commercially 

195 important species that migrate and aggregate to spawn include the Alaska Pollock (Theragra 

196 chalcogramma, Gadidae) and the Atlantic Herring (Clupea harengus, Clupeidae), which both 

197 contribute several million tons and tens of billions of dollars annually to global fisheries 

198 production (Dragesund et al. 1997; FAO 2014; Shida et al. 2014). The high abundance of fish 

199 present at aggregations during predictable periods and at known locations, which can range from 

200 tens to even millions of individuals confined to small areas, generates the ideal scenario for 

201 fishers; large catches and sizeable earnings with minimal effort (Sadovy and Domeier 2005; 

202 Erisman et al. 2012). Yet these same characteristics that can significantly elevate catchability 

203 render aggregations particularly vulnerable to overfishing, as targeted harvesting of fish from an 

204 aggregation may remove a large proportion of an entire population (Sadovy et al. 2008; Sadovy 

205 de Mitcheson and Erisman 2012). Since FSAs may attract the majority of breeding fish from a 

206 radius of 10s to 100s of kilometers, the extirpation of fish from the spawning site effectively 

207 removes the species from a much larger surrounding area (Nemeth 2009; Erisman et al. 2012). 

Page 10 of 45 
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208 For most species that form FSAs, it is the only time and place that they reproduce, so harvesting 

209 fish from these sites can rapidly and dramatically reduce the reproductive capacity of a stock by 

210 removing future egg production (Sadovy de Mitcheson and Erisman 2012; Dean et al. 2012; 

211 Erisman et al. 2014). 

212 Exploitation of aggregated fish may directly or indirectly compromise reproductive 

213 function, reproductive output, and fertilization rates by interfering with the mating process 

214 (Petersen et al. 2001; Rowe and Hutchings 2003; Alonzo and Mangel 2004; Rowe et al. 2008; 

215 Erisman et al. 2007; Rose et al. 2008). This occurs via disruptions of complex courtship rituals 

216 and mate encounter rates, impairment of visual or auditory communication, alterations of 

217 operational sex ratios and social structure during mating (Rowe and Hutchings 2003; Rowe et al. 

218 2004; Muñoz et al. 2010; Slabbekoorn et al. 2010); damage to critical spawning habitat by 

219 destructive fishing gear (Koslow et al. 2001; Coleman et al. 2000; Koenig et al. 2000; Kaiser et 

220 al. 2002); and stress-caused changes in hormone levels, fecundity, egg size and development, 

221 and egg survival (Morgan et al. 1999). 

222 This type of vulnerability to fishing is an important characteristic of FSAs that can lead to 

223 loss of the functional integrity of marine ecosystems as a result of the mass removal of key 

224 carnivores (Choat 2012) and essential nutrients (e.g. fatty acids via eggs) from the food web 

225 (Heithaus et al. 2008; Fuiman et al. 2014). Collectively, these factors explain why the 

226 overfishing of aggregations has often been associated with rapid declines in fish stocks, fishery 

227 collapses, ecosystem imbalances, the complete extirpation of aggregations from specific areas or 

228 regions, and in the most extreme cases, the near extinction of entire species (Cisneros-Mata et al. 

229 1995; Hutchings 1996; Sala et al. 2001; Erisman et al. 2011). 

230 Numerous families of fishes (e.g. Epinephelidae, Lutjanidae, Sciaenidae, Siganidae, 

10 
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231 Scombridae, Channidae, Polyprionidae, Gadidae) include species that form spawning 

232 aggregations that have undergone severe declines (Sadovy de Mitcheson and Erisman 2012; 

233 Russell et al. 2012) in response to overfishing, and many are classified as threatened or 

234 endangered by the International Union for the Conservation of Nature (IUCN), the Convention 

235 on the International Trade in Endangered Species (CITES), or the Food and Agriculture 

236 Organization of the United Nations (FAO). Possibly the most well known example of a 

237 remarkable species and fishery collapse related to FSAs is the Nassau Grouper. Once the most 

238 important Caribbean finfish fishery, it is now considered endangered by IUCN and being 

239 considered for listing as Threatened under the U.S. Endangered Species Act (ESA) after decades 

240 of overfishing resulted in the disappearance of the majority of FSAs throughout its geographic 

241 range (Sadovy and Eklund 1999; Sadovy de Mitcheson et al. 2013). Twenty of 163 species 

242 (12%) of groupers risk extinction if current fishing trends continue (Sadovy de Mitcheson et al. 

243 2013), and a comparative analysis among grouper species of known reproductive strategy 

244 demonstrated that spawning aggregation formation is associated with higher extinction risk 

245 (Sadovy de Mitcheson and Erisman 2012). 

246 Many large-bodied sciaenid (Sciaenidae) fishes have experienced similar declines due to 

247 the overfishing of their spawning aggregations. In the Gulf of California, Mexico, the annual 

248 harvest of thousands of tons of Totoaba (Totoaba macdonaldi, Sciaenidae), the world’s largest 

249 croaker, at its only spawning site from the 1920s to the 1950s resulted in its near extinction and 

250 the dubious distinction as the first marine fish listed on CITES as critically endangered (Cisneros 

251 Mata et al. 1995). The fishery for Totoaba has been replaced in recent years in the same region 

252 by a massive aggregation fishery for the Gulf Corvina (Cynoscion othonopterus, Sciaenidae), 

253 which may collapse if measures to reduce fishing pressure are not enacted soon (Erisman et al. 

11 
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254 2012; Erisman et al. 2014). Severe declines and regional extirpations of spawning aggregations 

255 in other large sciaenids include the Giant Yellow Croaker (Bahaba taipingensis, Sciaenidae) in 

256 China (Cheung and Sadovy 2003), the White Seabass (Atractoscion nobilis, Sciaenidae) in 

257 California USA (Pondella and Allen 2008), and the Blackspotted Croaker (Protonibea 

258 diacanthus, Sciaenidae) in Australia (Phelan 2008). 

259 

260 Conservation and management status 

261 The most recent and comprehensive report on the global status of marine fish 

262 aggregations revealed that 52% of the documented aggregations have not been assessed, less 

263 than 35% of FSAs are protected by any form of management (e.g. inclusion within marine 

264 protected areas, seasonal protection, harvest controls, total moratoria), and only about 25% have 

265 some form of monitoring in place (Russell et al. 2014). Among those FSAs in the database that 

266 have been evaluated, 53% are in decline and 10% have disappeared altogether. In congruence 

267 with much of the scientific literature on FSAs, the report is biased towards species that inhabit 

268 coral reefs (e.g. groupers and snappers). Greater representation by species and aggregations from 

269 higher latitudes and other ecosystems are needed to provide a more balanced understanding of 

270 FSAs and their fisheries (Russell et al. 2014). 

271 While few FSAs are managed or protected, they are frequently recognized directly or 

272 indirectly within the language of national and multi-national management strategies. It is 

273 common practice that FSAs, or at least important spawning grounds of fishes, are mentioned in 

274 the language of marine spatial planning documents of states, federal fisheries agencies, and 

275 NGOs when setting criteria and designing marine reserves (Sale et al. 2004; Green et al. 2014). 

276 For example, in 1996, the US Magnuson–Stevens Act mandated the identification of essential 

12 
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277 fish habitat (EFH) for specific target fishery species and defined EFH as ‘those waters and 

278 substrate necessary to fish for spawning, breeding, feeding, or growth to maturity (DOC 1997). 

279 The purpose of the Act was to create a national program for the conservation and management of 

280 US fishery resources to prevent overfishing, to rebuild fish stocks, insure conservation and 

281 facilitate long-term protection of essential fish habitats that would realize the full potential of the 

282 Nation's fishery resources. Fishery management councils were tasked with identifying Habitat 

283 Areas of Particular Concern and minimizing adverse effects of fishing on EFH. The Caribbean 

284 Fishery Management Council and the South Atlantic Fisheries Management Council are 

285 pursuing networks of reserves that protect multi-species spawning aggregations as an important 

286 strategy for managing data-poor reef species (Parma et al. 2014; SAFMC 2015). 

287 A recent reform of the European Union’s Common Fisheries Policy in line with the 

288 Marine Strategy Framework Directive considers a healthy population size structure and retention 

289 of full reproductive capacity to be indicative of Good Environmental Status. An ambitious target 

290 of ending overfishing by 2020 achieved through regulations that result in fishing at levels that do 

291 not endanger the reproduction of stocks while providing high long-term yields. A renewed focus 

292 on the protection of the functional role played by FSAs should be a step toward meeting the goal 

293 of sustainable fishing through maintenance of fish population size at maximum productivity. In 

294 the United Kingdom, the Marine Management Organization is evaluating sector-based marine 

295 spatial planning including a ‘core fishing grounds’ approach in which fishing might be given 

296 priority consideration over other activities (MMO 2014). 

297 FSAs match well with the criteria set by several international conservation agendas and 

298 calls to action. For example, FSAs are prime candidates for designation as Ecologically and 

299 Biologically Significant Areas (EBSAs) under the Convention on Biological Diversity, because 
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300 they fulfill all essential criteria: uniqueness or rarity, importance for life history stages, 

301 importance for declining species or habitats, biological productivity, biological diversity, and 

302 naturalness. Likewise, FSAs are mentioned in Article 6.8 of the General Principles of the FAO 

303 Code of Conduct for Responsible Fisheries that calls for “all critical fisheries habitats…such as 

304 spawning areas, should be protected and rehabilitated as far as possible and where necessary” 

305 (FAO 1995). At the 2004 IUCN World Conservation Congress, (Rec 3.100, p. 115) governments 

306 were urged to “establish sustainable management programmes for sustaining and protecting reef 

307 fish and their spawning aggregations…”, and international and fisheries management 

308 organizations and non-governmental organizations were requested “to take action to promote and 

309 facilitate the conservation and management of fish spawning aggregations…”. The International 

310 Coral Reef Initiative (ICRI) provided similar recommendations in 2006 and has since 

311 encouraged ICRI Operational Networks and Members, as well as inter-governmental, 

312 governmental and non-governmental organizations and the private sector, to contribute, as 

313 appropriate, to the implementation of these recommendations through appropriate projects, 

314 initiatives and campaigns that promote the conservation and sustainable management of reef fish 

315 spawning aggregations. In 2014, ICRI formally endorsed the latest global status report of fish 

316 aggregations produced by Science and Conservation of Fish Aggregations (Russell et al. 2014). 

317 Despite the fact that some species of aggregating fishes do migrate large distances that span 

318 international borders (e.g. Nassau and goliath groupers), none are currently recognized by the 

319 Convention on the Conservation of Migratory Species (CMS), which currently only lists a few 

320 species of sharks, rays, sawfishes (Pristidae), sturgeons (Acipenseridae) and related species, and 

321 the European Eel (Anguilla Anguilla, Anguillidae). In a recent statement that illustrates the 

322 growing recognition of FSA monitoring and protection, the FAO Western Central Atlantic 

14 
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323 Fisheries Commission (FAO WCAFC 2014) adopted recommendations for grouper and snapper 

324 spawning aggregation protection throughout region. 

325 

326 Protection can be practical, generate measurable benefits, and build consensus support 

327 The tendency of FSAs to form at spatially discrete locations at predictable times means 

328 that monitoring, enforcement, and research can all be scaled down and streamlined accordingly 

329 (Heyman 2014). A large proportion of the reproductive population for many wide-ranging 

330 species become concentrated at FSAs, providing a unique opportunity to rapidly and efficiently 

331 evaluate many aspects of fish stocks that would otherwise be dispersed over a much larger 

332 geographic area (Molloy et al. 2010; Heppell et al. 2012). Surveys and monitoring of the 

333 demographics, spawning activity and reproductive output of aggregations can be done more 

334 efficiently and quickly combined with other biological and life history parameters to assess stock 

335 size and condition (Jennings et al. 1996). Such efforts are facilitated by decades of research and 

336 protocols that are available on how to survey, assess, and manage FSAs and their fisheries (Colin 

337 et al. 2003; Heyman et al. 2004). Moreover, the rise of advanced, cost-effective technologies 

338 such as bioacoustics, biotelemetry, sonar, and remote and autonomous underwater vehicles now 

339 allow us to effectively monitor aggregations more accurately and remotely than in the past 

340 (Kobara and Heyman 2010; Dean et al. 2012; Heppell et al. 2012; Rowell et al. 2012; Parsons et 

341 al. 2013). 

342 A focus on spawning aggregation sites and periods for conservation and management 

343 purposes epitomizes the original “hotspots” concept, which describes small areas that hold an 

344 abundance of rare or endemic organisms and are threatened by human activities, but also places 

345 importance on productivity for the benefit of fisheries. Assigning these events and sites, 
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346 particularly those associated with multi-species aggregations, as priorities for investment will 

347 help protect the maximum diversity at minimum cost (Myers et al. 2000; Reid et al. 1998). The 

348 small area of spawning grounds compared to the area over which fish migrate and establish 

349 home ranges, creates the most “bang for the buck”, in that successful protection of spawning can 

350 scale up to the level of the entire population (Nemeth 2009; Nemeth 2012). Therefore, the 

351 management of small FSAs can help replenish fish populations at much larger scales that benefit 

352 stakeholders and are congruent with successful conservation practice. The high degree of 

353 geomorphological similarity among FSAs within regions also facilitates the designation of 

354 locations for seasonal or permanent marine reserves that have the potential to support a high 

355 diversity and biomass of fishes (Boomhower et al. 2010; Kobara and Heyman 2010; Kobara et 

356 al. 2013). In fact, scientists, fishers, and managers in Quintana Roo, Mexico and the U.S. South 

357 Atlantic are recognizing the geomorphic verisimilitude among multi-species spawning sites and 

358 their value for fisheries productivity and biodiversity conservation. Based on this 

359 recognition, collaborative efforts are underway to use this information to design and designate 

360 new marine managed areas in these regions (Heyman et al. 2014; Fulton et al. 2014; SAFMC 

361 2015). 

362 FSAs can show signs of recovery soon after protection due to the naturally high 

363 productivity of the sites where they form. Species that have been depleted can show marked 

364 increases in recruitment, biomass and size within a few years of protection and some that had 

365 been extirpated return and form aggregations once again (Beets and Freidlander 1999; Burton et 

366 al. 2005; Nemeth 2005; Luckhurst and Trott 2009; Aburto-Oropeza et al. 2011; Heppell et al. 

367 2012). These hotspots of primary and secondary productivity serve as sources of regional 

368 ecosystem enhancement and resilience that seed replenishment and recovery (Adger et al. 2005). 
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369 Protected FSAs provide direct ecological benefits to conservation through the buildup of fish 

370 biomass at the protected site (Aburto-Oropeza et al. 2011). This translates to direct economic 

371 benefits to fisheries through the measurable spillover of adults (via movement) or the settlement 

372 of larvae into exploited areas (Harrison et al. 2012; Almany et al. 2013), increases in catch rate 

373 and the size of harvested fish (Nemeth et al. 2012). Prominent examples of recovery include 

374 White Seabass and Giant Sea Bass (Stereolepis gigas, Polyprionidae) in California (Pondella and 

375 Allen 2008), groupers and snappers in the Caribbean (Beets and Friedlander 1999; Heyman 

376 2011; Kadison et al. 2009; Nemeth 2009; Burton et al. 2005; Heppell et al. 2012), Indo-Pacific 

377 (Hamilton et al. 2011), and several species of aggregating reef fishes in the Gulf of California, 

378 Mexico (Aburto-Oropeza et al. 2011). 

379 Synergy between conservationists and fishers is rare but greatly enhances compliance and 

380 self-enforcement, and thus overcomes a prime barrier to successful fisheries management and 

381 conservation efforts (Hilborn et al. 2005). Fishers have known for centuries where and when 

382 aggregations form (Johannes 1978), as they have been critical sources of food security and their 

383 economic livelihoods. In fact, most of the biological and fisheries information that scientists and 

384 managers have acquired on FSAs has been acquired from fishers (Johannes et al. 1999; Hamilton 

385 et al. 2011). Fishers intuitively recognize spawning aggregations as critical to the perpetuity of 

386 their resource, which often increases their willingness to focus management on them in order to 

387 sustain their fishery (Heyman and Granados-Dieseldorff 2012; Hamilton et al. 2012). The small 

388 size of FSAs in relation to the entire population range also means limited restrictions for fishers, 

389 which reduces conflict since they minimize reductions in open fishing grounds or time closures 

390 for fishing (Heppell et al. 2012). 

391 Some of the most successful population and fishery recoveries have occurred in areas 
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392 with strong community support and participation in the monitoring and management of 

393 aggregations (Hamilton et al. 2011; Aburto Oropeza et al. 2011; Granados-Dieseldorff et al. 

394 2013). Several of these have involved the inclusion of spawning aggregations within marine 

395 protected areas, providing examples in which some of the largest obstacle to successful marine 

396 reserves (e.g. opposition and noncompliance by fishers) were overcome through community 

397 participation (Berkes 2007; Karras and Agar 2009; Aburto-Oropeza et al. 2011; Hamilton et al. 

398 2012; Edgar et al. 2014). In other regions, fishers have supported temporary fishing or area 

399 closures that protected spawning but still allowed them to harvest other species during those 

400 periods or at those sites. For example, the Coastal Conservation Association (CCA), a national 

401 association representing recreational anglers in the United States, recognized the need to protect 

402 spawning aggregations of Speckled Hind (Epinephelus drummondhayi, Epinephelidae) and 

403 Warsaw Grouper (Hyporthodus nigritus, Epinephelidae) in the South Atlantic. CCA supported 

404 seasonal fishing closures during the spawning seasons and seasonal area closures for those 

405 species at known aggregation sites that would allow them to harvest other species at those sites 

406 (SAFMC 2015). Similarly, commercial and subsistence fishers in the Upper Gulf of California, 

407 Mexico, are opposed to the total area closure of the estuaries of the Colorado River Delta due to 

408 its historical importance to regional fisheries and food security. However, they support daily 

409 closures during the peak spawning periods for the Gulf Corvina to allow fish to spawn 

410 undisturbed, enhance reproductive output, and maintain economically sustainable yields 

411 (MacCall et al. 2011). After the collapse of the Nassau Grouper fishery in the United States 

412 Virgin Islands (Olsen and LaPlace 1978), fishers supported the establishment of a seasonal 

413 spawning closure of Red Hind (Epinephelus guttatus, Epinephelidae) to protect this species and 

414 its fishery from a similar fate (Beets and Friedlander 1992). 
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415 

416 Conclusions 

417 Breeding aggregations are widespread among animals and are the focal points for 

418 conservation and management of many terrestrial and marine species. While an appreciation of 

419 the importance of fish breeding habitat within the language of fisheries management and marine 

420 conservation agendas has grown in recent years, implementation of measures specifically tasked 

421 with protecting FSAs have not followed at a similar pace. We contend that FSAs should be a 

422 focal point for marine conservation and fisheries management on a global scale, with a particular 

423 emphasis placed on the protection of FSA sites that house aggregations of multiple species. 

424 These sites are geographically and taxonomically widespread, are crucial to the reproductive 

425 success and perpetuity of stocks and species that engage in this behavior, support ecosystem food 

426 web dynamics and other aspects of ecosystem health, and represent important components of 

427 commercial, recreational, and subsistence fisheries wherever they occur. The numerous, 

428 extensive declines in FSAs and aggregating species from many areas of the world suggest that 

429 protection is urgently needed, and there is strong empirical evidence that FSAs can recover to 

430 provide measurable ecological and fisheries benefits. Most importantly, the concept is intuitive 

431 to fishers, managers, conservations, and the general public and the measures necessary for 

432 effective monitoring, assessment, and management are often relatively practical in scope and 

433 scale. Therefore, protection of FSAs offers the rare opportunity to merge agendas and support of 

434 fisheries and conservation sectors. 

435 The primary purpose of this article was to present a series of arguments as to why FSAs 

436 must be protected and not to review or assess the specific management options to achieve this 

437 goal as this has been done elsewhere (see Sadovy and Domeier 2005; Russell et al. 2012; Grüss 
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438 et al. 2014). However, a brief discussion of this topic is warranted as a means for stimulating 

439 debate on how to move forward in implementing the wider protection of FSAs. The reproductive 

440 biology of an exploited species plays an important role in the main concepts underlying the 

441 assessment and management of any fishery (Lowerre-Barbieri 2009). Similar to other fisheries 

442 and marine conservation issues, effective management of FSAs requires an understanding of the 

443 dynamics of the aggregations themselves (e.g. timing, duration, spatial distribution, mating 

444 behavior and life history of fished species) and how they interact with fishing activities in time 

445 and space (e.g., exploitation level on aggregations, catchability) to set the proper regulations 

446 (Coleman et al. 2004; Russell et al. 2012; Sadovy de Mitcheson and Erisman 2012; Grüss and 

447 Robinson 2014). When fishing pressure is focused primarily at aggregation sites or during the 

448 peak spawning, spawning reserves may offer meaningful protection that helps protect stocks or 

449 rebuild declining stocks through increased reproductive output and subsequent enhancement in 

450 recruitment, and which ideally offsets any increased mortality outside marine reserves due to 

451 displaced fishing effort (Pelc et al. 2010; Harrison et al. 2012). Reproductive activity and output 

452 are enhanced via the direct protection of the aggregation from disturbances by fishing and other 

453 human activities that allows for the persistence and stability of the mating process and the social 

454 structure associated with reproduction (Rowe and Hutchings 2003; Slabbekoorn et al. 2010; 

455 Dean et al. 2012). Notably, the direct and indirect (both lethal and non-lethal) effects of fishing 

456 activities on FSAs and how they may reduce reproductive activity and output continue to be 

457 largely ignored in assessments and theoretical studies related to the management of aggregation 

458 fisheries, such that reproductive output and potential fisheries yield are still estimated using 

459 traditional metrics such as fishing mortality and fecundity (Heppell et al. 2006; Grüss and 

460 Robinson 2014; Grüss et al. 2014). Field, experimental, and modeling studies that evaluate and 
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461 incorporate aspects of reproductive success related to interactions between fishing activities and 

462 spawning behavior are likely to produce more realistic assessments of the benefits of spawning 

463 reserves to fisheries. 

464 The success of spawning reserves hinges on the same factors as other reserves, including 

465 proper design, enforcement and compliance, and clearly defined management objectives (Edgar 

466 et al. 2014). Spawning reserves may not be effective in maintaining or rebuilding stocks if 

467 placed in the wrong location or if fishing activity is high outside the spawning season at different 

468 locations and no additional regulations are in place to limit fishing mortality (Eklund et al. 2000; 

469 Heppell et al. 2006; Ellis and Powers 2012; Chan et al. 2012). Unfortunately, the inclusion of 

470 spawning reserves within larger marine protected areas theoretical plans often lack rigor and full 

471 consideration of the dynamics of aggregations. As a result, reserves that have failed to meet their 

472 general objectives have also failed to protect aggregations (Rife et al. 2012; Grüss et al. 2014). 

473 Under those circumstances, greater fisheries and conservation benefits may result from the 

474 implementation of other measures that protect spawning activity and reproductive output such as 

475 seasonal closures, harvest restrictions during the spawning season, sales bans, or gear restrictions 

476 to aid in the protection of spawning fish (Rhodes and Rhodes 2005; Heppell et al. 2006; Russell 

477 et al. 2012). 

478 Even if FSAs are effectively protected, a combination of measures is often necessary (e.g. 

479 seasonal closures, harvest limits, gear restrictions, moratoria) to ensure the maintenance of 

480 stable, healthy fish populations and sustainable, productive fisheries (Pondella and Allen 2008; 

481 Russell et al. 2012; Grüss and Robinson 2014; Grüss et al. 2014). However, a large proportion of 

482 the world’s fisheries that target FSAs are considered “data poor” and lack the necessary fisheries 

483 or biological information to conduct robust stock assessments or effectively design and 
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484 implement a suite of management strategies (Erisman et al. 2014). In these situations, we 

485 contend that focusing management first on spawning and later on other components will provide 

486 the highest benefit to cost ratio for both fisheries and conservation outcomes. Finally, and 

487 perhaps the biggest challenge facing FSAs, the effective management of FSAs must overcome 

488 the strong social and economic appeal for (over) fishing aggregations and incorporate market-

489 based solutions that will create incentives for fishing at sustainable levels that also support viable 

490 fisheries for the economic livelihoods and food security of coastal communities (Sadovy de 

491 Mitcheson and Erisman 2012). 
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917 Figure Legends 

918 

919 Figure 1. Fish spawning aggregations are hotspots of biodiversity and productivity. (A) Whale 

920 sharks (Rhincodon typus) time their migrations to feed on the dense patches of nutrient-rich eggs 

921 released from Cubera snapper (Lutjanus cyanopterus) spawning aggregations (photo by D. 

922 Seifert). (B) Small-scale fishermen harvest more than 2 million individuals (5,000 tons) of Gulf 

923 corvina (Cynoscion othonopterus) in less than 30 days of fishing at a single spawning site in 

924 Mexico (photo by O. Aburto). (C) The spawning aggregation of thousands of Bigeye Trevally 

925 (Caranx sexfasciatus, Carangidae) that form each year inside Cabo Pulmo National Park in 

926 Mexico have become an icon of the well-documented recovery of this marine protected area that 

41 



 

              

        

  

                

             

     

                

              

             

               

              

  

  
For Review

 O
nly 

Page 43 of 45 Fish and Fisheries 

927 attracts thousands of divers and generates millions of dollars for the surrounding community 

928 each year (photo by O. Aburto). 

929 

930 Figure 2. Global map showing areas of documented FSAs organized by region or country. Data 

931 (n=906 verified records) provided by Science and Conservation of Fish Aggregations Global 

932 Spawning Aggregations Database (http://www.scrfa.org/database/). 

933 Figure 3. Benefits of FSAs to food webs. Counter-gradient redistribution of trophic resources to 

934 lower trophic levels through “egg boons” created by the spawning aggregation of a meso-

935 carnivorous grouper. Broken black arrows show traditional trophic pathways and solid white 

936 arrows show flow through egg boons. Organisms are arranged vertically by trophic level. Length 

937 axis is logarithmic. Figure from Fuiman et al. 2015. Used with permission. 
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